Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38067777

ABSTRACT

Severe visual impairment and blindness significantly affect a person's quality of life, leading sometimes to social anxiety. Nevertheless, instead of concentrating on a person's inability, we could focus on their capacities and on their other senses, which in many cases are more developed. On the other hand, the technical evolution that we are witnessing is able to provide practical means that can reduce the effects that blindness and severe visual impairment have on a person's life. In this context, this article proposes a novel wearable solution that has the potential to significantly improve blind person's quality of life by providing personal assistance with the help of Visible Light Communications (VLC) technology. To prevent the wearable device from drawing attention and to not further emphasize the user's deficiency, the prototype has been integrated into a smart backpack that has multiple functions, from localization to obstacle detection. To demonstrate the viability of the concept, the prototype has been evaluated in a complex scenario where it is used to receive the location of a certain object and to safely travel towards it. The experimental results have: i. confirmed the prototype's ability to receive data at a Bit-Error Rate (BER) lower than 10-7; ii. established the prototype's ability to provide support for a 3 m radius around a standard 65 × 65 cm luminaire; iii. demonstrated the concept's compatibility with light dimming in the 1-99% interval while maintaining the low BER; and, most importantly, iv. proved that the use of the concept can enable a person to obtain information and guidance, enabling safer and faster way of traveling to a certain unknown location. As far as we know, this work is the first one to report the implementation and the experimental evaluation of such a concept.


Subject(s)
Visually Impaired Persons , Wearable Electronic Devices , Humans , Quality of Life , Blindness , Light
2.
Polymers (Basel) ; 15(18)2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37765646

ABSTRACT

Given the predominantly negative impact of heavy metals on living organisms, the present study proposed to evaluate the adsorption performances under static conditions of Cd (II) from aqueous solutions on unmodified Sarkanda grass lignin compared to the adsorption performances of polysaccharide polymers chemically functionalized, obtained by synthesis and in their native state, but which, although effective, have a cost price that does not allow for large-scale expansion. To improve the retention of Cd (II) on this aromatic component of the biomass resulting from the processing of lignocellulosic materials, different experimental conditions (pH, concentration, dose and contact time) were followed. The Freundlich and Langmuir isotherms were used to describe the equilibrium conditions. Adsorption kinetics were assessed using the Lagergren I and Ho and McKay II kinetic models, furnishing informative insights into the process mechanism. Lignin adsorption capacity was also analyzed by performing biological tests on tomato seeds (Lypercosium esculentum), since heavy metals are known to be a stress factor for seeds by disturbing the osmotic equilibrium. Through the prism of the investigated parameters and under precisely established experimental conditions, unmodified Sarkanda grass lignin-an aromatic biopolymer-can be recommended as a promising adsorbent for the retention of Cd (II) from aqueous solutions, successfully replacing polysaccharide, especially cellulose-based polymers.

3.
Diagnostics (Basel) ; 13(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36900113

ABSTRACT

High-frequency ultrasonography (HF-USG) is a relatively new imaging method that allows the evaluation in a non-invasive manner of the skin layers and skin appendages. It is a diagnostic tool with increasing usefulness in numerous dermatological pathologies. High reproducibility, non-invasiveness and short diagnostic time make this method an increasingly used tool in dermatological practice. The subepidermal low-echogenic band is a relatively newly described parameter that seems to be a marker not only of intrinsic and extrinsic skin aging, but also of inflammatory processes taking place at the skin level. This systematic review aims to evaluate the role that SLEB has in the diagnosis and monitoring of the treatment of some inflammatory and non-inflammatory dermatological conditions, as well as its utility as a disease marker.

4.
Sensors (Basel) ; 23(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36772099

ABSTRACT

The Internet of Things (IoT) has become a part of modern life where it is used for data acquisition and long-range wireless communications. Regardless of the IoT application profile, every wireless communication transmission is enabled by highly efficient antennas. The role of the antenna is thus very important and must not be neglected. Considering the high demand of IoT applications, there is a constant need to improve antenna technologies, including new antenna designs, in order to increase the performance level of WSNs (Wireless Sensor Networks) and enhance their efficiency by enabling a long range and a low error-rate communication link. This paper proposes a new antenna design that is able to increase the performance level of IoT applications by means of an original design. The antenna was designed, simulated, tested, and evaluated in a real operating scenario. From the obtained results, it ensured a high level of performance and can be used in IoT applications specific to the 868 MHz frequency band.By inserting two notches along x axis, we find an optimal structure of the microstrip patch antenna with a reflection coefficient of -34.3 dB and a bandwidth of 20 MHz. After testing the designed novel antenna in real IoT operating conditions, we concluded that the proposed antenna can increase the performance level of IoT wireless communications.

5.
Sensors (Basel) ; 23(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36772609

ABSTRACT

The Internet of Things (IoT) concept involves connecting devices to the internet and forming a network of objects that can collect information from the environment without human intervention. Although the IoT concept offers some advantages, it also has some issues that are associated with cyber security risks, such as the lack of detection of malicious wireless sensor network (WSN) nodes, lack of fault tolerance, weak authorization, and authentication of nodes, and the insecure management of received data from IoT devices. Considering the cybersecurity issues of IoT devices, there is an urgent need of finding new solutions that can increase the security level of WSNs. One issue that needs attention is the secure management and data storage for IoT devices. Most of the current solutions are based on systems that operate in a centralized manner, ecosystems that are easy to tamper with and provide no records regarding the traceability of the data collected from the sensors. In this paper, we propose an architecture based on blockchain technology for securing and managing data collected from IoT devices. By implementing blockchain technology, we provide a distributed data storage architecture, thus eliminating the need for a centralized network topology using blockchain advantages such as immutability, decentralization, distributivity, enhanced security, transparency, instant traceability, and increased efficiency through automation. From the obtained results, the proposed architecture ensures a high level of performance and can be used as a scalable, massive data storage solution for IoT devices using blockchain technologies. New WSN communication protocols can be easily enrolled in our data storage blockchain architecture without the need for retrofitting, as our system does not depend on any specific communication protocol and can be applied to any IoT application.

6.
Polymers (Basel) ; 14(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36236054

ABSTRACT

Marine macroalgae biomass is a valuable renewable resource that can be used for the development of bioeconomy through the valorisation of valuable compounds. The aim of the current study is separate macroalgal polysaccharides with bioactive properties from brown macroalgae Fucus spiralis based on a designed biocascading biorefinery approach. Thus, we applied an integrated processing method for the separation of fucoidan and alginate, in addition to characterization through IR spectroscopy and 1H NMR. The bioactivity potential (antioxidant activity using superoxide anion and DPPH radical scavenging analysis) of the two polysaccharides was evaluated, together with DNA binding studies performed though voltametric techniques and electronic spectroscopy titration. In terms of results, functional groups S=O (1226 cm-1), N=S=O (1136 cm-1) and C-O-SO3 (1024 cm-1), which are characteristic of fucoidan, were identified in the first polysaccharidic extract, whereas guluronic units (G) (1017 cm-1) and mannuronic units (M) (872 and 812 cm-1) confirmed the separation of alginate. The DNA binding studies of the isolated polysaccharides revealed an electrostatic and an intercalation interaction of DNA with fucoidan and alginate, respectively. Both antioxidant activity assays revealed improved antioxidant activity for both fucoidan and alginate compared to the standard α-tocopherol.

7.
J Inflamm Res ; 15: 5163-5184, 2022.
Article in English | MEDLINE | ID: mdl-36110506

ABSTRACT

The interrelations and sequencing of interleukins are complex (inter)actions where each interleukin can stimulate the secretion of its preceding interleukin. In this paper, we attempt to summarize the currently known roles of IL-4, IL-13, IL-31, and IL-33 from a multi-disciplinary perspective. In order to conduct a comprehensive review of the current literature, a search was conducted using PubMed, Google Scholar, Medscape, UpToDate, and Key Elsevier for keywords. The results were compiled from case reports, case series, letters, and literature review papers, and analyzed by a panel of multi-disciplinary specialist physicians for relevance. Based on 173 results, we compiled the following review of interleukin signaling and its clinical significance across a multitude of medical specialties. Interleukins are at the bed rock of a multitude of pathologies across different organ systems and understanding their role will likely lead to novel treatments and better outcomes for our patients. New interleukins are being described, and the role of this inflammatory cascade is still coming to light. We hope this multi-discipline review on the role interleukins play in current pathology assists in this scope.

8.
Sensors (Basel) ; 22(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36146084

ABSTRACT

Visible light communications emerges as a promising wireless communication technology that has been found suitable for numerous indoor and outdoor applications. In this article, a new in-vehicle VLC system is designed, implemented, and experimentally evaluated. The purpose of this new system is to provide car passengers with optical wireless communications. The proposed system consists of a VLC emitter integrated into the vehicle's ambient lighting system and a mobile VLC receiver. Unlike any previous works, this article proposes a VLC emitter in which the light from a 3 W LED is distributed on a 2 square meter surface using 500 optical fibers whose main purpose is a decorative one. The proposed prototype has been implemented on a car and evaluated in relevant working conditions. The experimental evaluation of the proposed system has demonstrated the viability of the proposed concept and showed a data rate of 250 kb/s while providing a BER lower than 10-7. As far as we know, the proposed concept is totally new in the VLC literature, opening a new area of utilization for VLC technology: using VLC with optical fiber distributed light.

9.
Sensors (Basel) ; 22(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35897984

ABSTRACT

In urban areas, pedestrians are the road users category that is the most exposed to road accident fatalities. In this context, the present article proposes a totally new architecture, which aims to increase the safety of pedestrians on the crosswalk. The first component of the design is a pedestrian detection system, which identifies the user's presence in the region of the crosswalk and determines the future street crossing action possibility or the presence of a pedestrian engaged in street crossing. The second component of the system is the visible light communications part, which is used to transmit this information toward the approaching vehicles. The proposed architecture has been implemented at a regular scale and experimentally evaluated in outdoor conditions. The experimental results showed a 100% overall pedestrian detection rate. On the other hand, the VLC system showed a communication distance between 5 and 40 m when using a standard LED light crosswalk sign as a VLC emitter, while maintaining a bit error ratio between 10-7 and 10-5. These results demonstrate the fact that the VLC technology is now able to be used in real applications, making the transition from a high potential technology to a confirmed technology. As far as we know, this is the first article presenting such a pedestrian street crossing assistance system.

10.
Sensors (Basel) ; 22(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35062463

ABSTRACT

In this paper, we present the design, development and implementation of an integrated system for the management of COVID-19 patient, using the LoRaWAN communication infrastructure. Our system offers certain advantages when compared to other similar solutions, allowing remote symptom and health monitoring that can be applied to isolated or quarantined people, without any external interaction with the patient. The IoT wearable device can monitor parameters of health condition like pulse, blood oxygen saturation, and body temperature, as well as the current location. To test the performance of the proposed system, two persons under quarantine were monitored, for a complete 14-day standard quarantine time interval. Based on the data transmitted to the monitoring center, the medical staff decided, after several days of monitoring, when the measured values were outside of the normal parameters, to do an RT-PCR test for one of the two persons, confirming the SARS-CoV2 virus infection. We have to emphasize the high degree of scalability of the proposed solution that can oversee a large number of patients at the same time, thanks to the LoRaWAN communication protocol used. This solution can be successfully implemented by local authorities to increase monitoring capabilities, also saving lives.


Subject(s)
COVID-19 , Internet of Things , Humans , Oxygen Saturation , Pandemics , RNA, Viral , SARS-CoV-2
11.
Sensors (Basel) ; 21(11)2021 May 21.
Article in English | MEDLINE | ID: mdl-34063873

ABSTRACT

The use of visible light communications technology in communication-based vehicle applications is gaining more and more interest as the research community is constantly overcoming challenge after challenge. In this context, this article addresses the issues associated with the use of Visible Light Communications (VLC) technology in Vehicle-to-Vehicle (V2V) communications, while focusing on two crucial issues. On the one hand, it aims to investigate the achievable communication distance in V2V applications while addressing the least favorable case, namely the one when a standard vehicle rear lighting system is used as a VLC emitter. On the other hand, this article investigates another highly unfavorable use case scenario, i.e., the case when two vehicles are located on adjacent lanes, rather than on the same lane. In order to evaluate the compatibility of the VLC technology with the usage in inter-vehicle communication, a VLC prototype is intensively evaluated in outdoor conditions. The experimental results show a record V2V VLC distance of 75 m, while providing a Bit Error Ratio (BER) of 10-7-10-6. The results also show that the VLC technology is able to provide V2V connectivity even in a situation where the vehicles are located on adjacent lanes, without a major impact on the link performances. Nevertheless, this situation generates an initial no-coverage zone, which is determined by the VLC receiver reception angle, whereas in some cases, vehicle misalignment can generate a BER increase that can go up to two orders of magnitude.

12.
Sci Rep ; 11(1): 10732, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031496

ABSTRACT

The main goal of this study is to identify the association between corneal shape, elevation, and thickness parameters and visual field damage using machine learning. A total of 676 eyes from 568 patients from the Jichi Medical University in Japan were included in this study. Corneal topography, pachymetry, and elevation images were obtained using anterior segment optical coherence tomography (OCT) and visual field tests were collected using standard automated perimetry with 24-2 Swedish Interactive Threshold Algorithm. The association between corneal structural parameters and visual field damage was investigated using machine learning and evaluated through tenfold cross-validation of the area under the receiver operating characteristic curves (AUC). The average mean deviation was - 8.0 dB and the average central corneal thickness (CCT) was 513.1 µm. Using ensemble machine learning bagged trees classifiers, we detected visual field abnormality from corneal parameters with an AUC of 0.83. Using a tree-based machine learning classifier, we detected four visual field severity levels from corneal parameters with an AUC of 0.74. Although CCT and corneal hysteresis have long been accepted as predictors of glaucoma development and future visual field loss, corneal shape and elevation parameters may also predict glaucoma-induced visual functional loss.

13.
Sensors (Basel) ; 20(13)2020 Jul 05.
Article in English | MEDLINE | ID: mdl-32635604

ABSTRACT

Visible light communications are considered as a promising solution for inter-vehicle communications, which in turn can significantly enhance the traffic safety and efficiency. However, the vehicular visible light communications (VLC) channel is highly dynamic, very unpredictable, and subject to many noise sources. Enhancing VLC systems with self-aware capabilities would maximize the communication performances and efficiency, whatever the environmental conditions. Within this context, this letter proposes a novel signal to noise ratio (SNR)-adaptive visible light communication receiver architecture aimed for automotive applications. The novelty of this letter comes from an open loop signal processing technique in which the signal treatment complexity is established based on a real-time SNR analysis. So, the receiver evaluates the SNR, and based on this assessment, it reconfigures its structural design in order to ensure a proper signal treatment, while providing an optimal tradeoff between communication performances and computational resources usage. This approach based on software reconfiguration has the potential to provide the system with enhanced flexibility and enables its usage in resource sharing application. As far as we know, this approach has not been considered in vehicular VLC systems. The performances of the proposed architecture are demonstrated by simulations, which confirm the SNR-adaptive capacity and the optimized performances.

14.
Sensors (Basel) ; 20(15)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722146

ABSTRACT

The digital revolution has changed the way we implement and use connected devices and systems by offering Internet communication capabilities to simple objects around us. The growth of information technologies, together with the concept of the Internet of Things (IoT), exponentially amplified the connectivity capabilities of devices. Up to this moment, the Long Range (LoRa) communication technology has been regarded as the perfect candidate, created to solve the issues of the IoT concept, such as scalability and the possibility of integrating a large number of sensors. The goal of this paper is to present an analysis of the communication collisions that occur through the evaluation of performance level in various scenarios for the LoRa technology. The first part addresses an empirical evaluation and the second part presents the development and validation of a LoRa traffic generator. The findings suggest that even if the packet payload increases, the communication resistance to interferences is not drastically affected, as one may expect. These results are analyzed by using a novel Software Defined Radio (SDR) technology LoRa traffic generator, that ensures a high-performance level in terms of generating a large LoRa traffic volume. Despite the use of orthogonal variable spreading factor technique, within the same communication channel, the collisions between LoRa packets may dramatically decrease the communication performance level.

15.
Sensors (Basel) ; 20(11)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512759

ABSTRACT

As the interest toward communication-based vehicle safety applications is increasing, the development of secure wireless communication techniques has become an important research area. In this context, the article addresses issues that are related to the use of the visible light communication (VLC) technology in vehicular applications. Thus, it provides an extensive presentation concerning the main challenges and issues that are associated to vehicular VLC applications and of some of the existing VLC solutions. Moreover, the article presents the aspects related to the design and intensive experimental evaluation of a new automotive VLC system. The experimental evaluation performed in indoor and outdoor conditions shows that the proposed system can achieve communication distances up to 50 m and bit error ratio (BER) lower than 10-6, while being exposed to optical and weather perturbations. This article provides important evidence concerning the snowfall effect on middle to long range outdoor VLC, as the proposed VLC system was also evaluated in snowfall conditions. Accordingly, the experimental evaluation showed that snowfall and heavy gust could increase bit error rate by up to 10,000 times. Even so, this article provides encouraging evidence that VLC systems will soon be able to reliably support V2X communications.

16.
Food Chem ; 252: 356-365, 2018 Jun 30.
Article in English | MEDLINE | ID: mdl-29478554

ABSTRACT

Fruits and aerial parts of lingonberry could be better developed as dietary supplements if the composition in bioactive phenolic compounds and the best period for collection were known. UPLC/MS analysis revealed the predominant presence of arbutin in leaf and that of flavanols in stems harvested in May, July and September. Anthocyanins, flavanols and benzoic acid derivatives were equally present in fruits. Stem and leaf are highly homologous with (+)-catechin, A- and B-type dimers/trimers, and two quercetin glycosides as major contributors. No or only weak seasonal variations were highlighted for all phenolic classes. Additionally, flavanol oligomers showed a lower mDP for fruit (3-4) than for stem and leaf (4-6). The rate of A-type linkage was 3-5% with A-type subunits in extension mainly. Finally, the content in phenolic compounds (UPLC) correlated well with TPC and the DPPH radical scavenging activity although leaf and stem constituents reacted differently in both antioxidant tests.


Subject(s)
Antioxidants/analysis , Fruit/growth & development , Phenols/chemistry , Plant Extracts/chemistry , Vaccinium vitis-idaea/chemistry , Anthocyanins/analysis , Catechin/analysis , Fruit/chemistry , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Stems/chemistry , Plant Stems/growth & development , Polyphenols/analysis , Vaccinium vitis-idaea/growth & development
17.
Eur J Pharm Biopharm ; 122: 78-86, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29031922

ABSTRACT

Reactive oxygen species (ROS) are common products of normal aerobic cellular metabolism, but high levels of ROS lead to oxidative stress and cellular damage. Therefore, effective antioxidant therapies are needed to prevent ROS overproduction. This study reports the development of poly(l-lactide-co-glycolide) (PLGA) bicomponent fibers loaded with selected amounts of the natural polyphenolic antioxidant catechin. Thereby a novel route based on emulsion electrospinning is investigated to obtain tailored and sustained release rates for chatechin. The activity of the released catechin was assessed for its influence on multi-walled carbon nanotube (MWCNT) induced formation of reactive oxygen species (ROS) in the human alveolar epithelial the cell line A549. Homogenous fiber morphologies were obtained at specified ranges of PLGA concentrations within the emulsions including the formation of a core - sheath structure localizing the drug within the fiber core. In vitro measurements of the delivery showed moderate burst release kinetics in a first phase followed by a linear and smooth release at long term. In combination with polymer degradation studies a mostly diffusion controlled release mechanism was revealed exhibiting only marginal degradation of the polymer during the time span of the drug delivery. As a proof of concept, the activity of released catechin in A549 cells stimulated with MWCNTs was determined and revealed a high reduction of ROS production in a dose dependent manner. This effect diminishes over time indicating a depletion of catechin.


Subject(s)
Carbon/adverse effects , Catechin/administration & dosage , Catechin/chemistry , Lactic Acid/chemistry , Nanotubes/adverse effects , Polyglycolic Acid/chemistry , Reactive Oxygen Species/metabolism , A549 Cells , Antioxidants/metabolism , Cell Line, Tumor , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Diffusion , Drug Liberation/drug effects , Emulsions/administration & dosage , Emulsions/chemistry , Humans , Kinetics , Polylactic Acid-Polyglycolic Acid Copolymer , Polymers/chemistry
18.
Food Chem ; 213: 58-68, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27451155

ABSTRACT

The seasonal variations of the content and diversity of phenolic compounds, as well as the antioxidant activity of leaves, stems and fruits of bilberry collected in May, July and September, were evaluated for two consecutive years. UPLC/MS(n) analyses showed the predominance of anthocyanins in fruits, caffeic acid derivatives in leaves whereas flavanol oligomers represented more than half of the phenolic compounds in stems. Thioacidolysis revealed degrees of polymerization between 2 and 4 and (-)-epicatechin as the main flavanol unit. The sum of the phenolic compounds by UPLC was highly correlated with the total polyphenol content and the antioxidant activity in the DPPH test for all the extracts except for May leaves. The latter were relatively rich in p-coumaric acid derivatives. Seasonal effects were more marked for leaves, which exhibited higher antioxidant activities and phenolic contents in July and September when these parameters were at their highest in July for stems.


Subject(s)
Anthocyanins/chemistry , Fruit/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Polyphenols/chemistry , Vaccinium myrtillus/chemistry , Biphenyl Compounds/chemistry , Chromatography, High Pressure Liquid , Coumaric Acids/chemistry , Free Radical Scavengers/chemistry , Mass Spectrometry , Picrates/chemistry , Plant Stems/chemistry , Propionates , Seasons , Spectrometry, Mass, Electrospray Ionization
19.
Ultrason Sonochem ; 32: 191-197, 2016 09.
Article in English | MEDLINE | ID: mdl-27150760

ABSTRACT

In this paper, the kinetics of polyphenols extraction from spruce bark (Picea abies) under ultrasounds action was investigated. Studies were performed in order to express the effect of some specific parameters (as: ultrasounds, surface contact between solvent and solid, extraction time and temperature) on the total phenolic content (TPC). Experiments were performed in the presence and absence of ultrasounds, using different contact surfaces between solvent and solid, for times from 5 to 75min and temperatures of 318, 323 and 333K. All these factors have a positive influence on the process, enhancing the extraction rate by recovering higher amounts of polyphenols. The process takes place in two stages: a fast one in the first 20-30min (first stage), followed by a slow one approaching to an equilibrium concentration after 40min (second stage). In these conditions, the second-order kinetic model was successfully developed for describing the mechanism of ultrasound-assisted extraction of polyphenols from P. abies bark. Based on this model, values of second-order extraction rate constant (k), initial extraction rate (h), saturation concentration (Cs) and activation energy (Ea) could be predicted. Model validation was done by plotting experimental and predicted values of TPC's, revealing a very good correlation between the obtained data (R(2)>0.98).


Subject(s)
Picea/chemistry , Polyphenols/chemistry , Abies , Phenols , Pinus , Ultrasonics
20.
Chem Biodivers ; 12(11): 1635-51, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26567943

ABSTRACT

From all the valuable biomass extractives, polyphenols are a widespread group of secondary metabolites found in all plants, representing the most desirable phytochemicals due to their potential to be used as additives in food industry, cosmetics, medicine, and others fields. At present, there is an increased interest to recover them from plant of spontaneous flora, cultivated plant, and wastes resulted in agricultural and food industry. That is why many efforts have been made to provide a highly sensitive, efficiently, and eco-friendly methods, for the extraction of polyphenols, according to the green chemistry and sustainable development concepts. Many extraction procedures are known with advantages and disadvantages. From these reasons, the aim of this article is to provide a comparative analysis regarding technical and economical aspects related to the most innovative extraction techniques studied in the last time: microwave-assisted extraction (MAE), supercritical fluid extraction (SFE), and ultrasound-assisted extraction (UAE).


Subject(s)
Chemical Fractionation , Green Chemistry Technology , Plant Extracts/chemistry , Polyphenols/isolation & purification , Microwaves , Polyphenols/chemistry , Ultrasonic Waves
SELECTION OF CITATIONS
SEARCH DETAIL
...